Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We derive precise formulas for the archimedean Euler factors occurring in certain standard Langlands 𝐿-functions for unitary groups.In the 1980s, Paul Garrett, as well as Ilya Piatetski-Shapiro and Stephen Rallis (independently of Garrett), discovered integral representations of automorphic 𝐿-functions that are Eulerian but, in contrast to the Rankin–Selberg and Langlands–Shahidi methods, do not require that the automorphic representations to which the 𝐿-functions are associated are globally generic.Their approach, thedoubling method, opened the door to a variety of applications that could not be handled by prior methods.For over three decades, though, the integrals occurring in the Euler factors at archimedean places for unitary groups eluded precise computation, except under particular simplifications (such as requiring certain representations to be one-dimensional, as Garrett did in the first major progress on this computation and only prior progress for general signatures).We compute these integrals for holomorphic discrete series of general vector weights for unitary groups of any signature.This has consequences not only for special values of 𝐿-functions in the archimedean setting, but also for 𝑝-adic 𝐿-functions, where the corresponding term had remained open.more » « less
-
Gaussian periods are certain sums of roots of unity whose study dates back to Gauss’s seminal work in algebra and number theory. Recently, large scale plots of Gaussian periods have been revealed to exhibit striking visual patterns, some of which have been explored in the second named author’s prior work. In 2020, the first named author produced a new app, Gaussian Periods, which allows anyone to create these plots much more efficiently and at a larger scale than before. In this paper, we introduce Gaussian periods, present illustrations created with the new app, and summarize how mathematics controls some visual features, including colorings left unexplained in earlier work.more » « less
-
null (Ed.)Gaussian periods are certain sums of roots of unity whose study dates back to Gauss’s seminal work in algebra and number theory. Recently, large scale plots of Gaussian periods have been revealed to exhibit striking visual patterns, some of which have been explored in the second named author’s prior work. In 2020, the first named author produced a new app, Gaussian periods, which allows anyone to create these plots much more efficiently and at a larger scale than before. In this paper, we introduce Gaussian periods, present illustrations created with the new app, and summarize how mathematics controls some visual features, including colorings left unexplained in earlier work.more » « less
An official website of the United States government

Full Text Available